Improving Search Results Ranking Using a Knowledge Graph

Hiba Ahsan (University of Massachusetts Amherst), Sudarshan Lamkhede (Netflix Research)

Motivation

- Augmenting machine learned models with knowledge graphs (KGs) can help add domain-specific knowledge to models.
- Tasks such as question-answering, named entity recognition have benefitted from this augmentation.
- KGs have been successfully used in search as well for ranking.

Task

Improve the quality of search results using a KG

How can we use a KG to improve our model?

- KG-aware learning methods can be classified into two categories:
 - Embedding-based methods
 - **Regularization-based methods**
- Baseline model is a neural network that takes features derived from query, entity, and query-entity as inputs.
- Incorporated KG-based embeddings of the entity (and also query in case of KEWER) to make the model KG-aware

How can we use a KG to improve our model?

- We experimented with the following approaches to learn the embeddings:
 - TransE embeddings
 - Knowledge Graph Attention Network for Recommendation (KGAT)
 - Knowledge graph Entity and Word Embedding for Retrieval (KEWER)

TransE

View relations as translations performed on entity embeddings.

Translating Embeddings for Modeling Multi-relational Data, Antoine Bordes et. al., NeuRIPS 2013

Knowledge graph attention network for recommendation. Xiang Wang, et. al., KDD 2019.

KEWER

Entity search model which embeds words and entities in the same space.

Joint Word and Entity Embeddings for Entity Retrieval from a Knowledge Graph, F. Nikolaev, A. Kotov, ECIR 2020

Experiments

- Training data: 996,332 examples of query-entity features and binary relevance label tuples.
- Knowledge Graph:
 - 508,725 entities
 - 7,887,096 head-relation-tail triples
 - 20 entity types including Person, Video (i.e. movie or TV series), Genre (e.g. thriller).
 - 18 relations including acted_in, directed_by.
- Trained 64 dimensional embeddings of entities separately and added them as features into the baseline model.
- Evaluation based on Normalized Mean Reciprocal Rank (NMRR) metric.

Results

Model	# Model Parameters	NMRR Gain
Baseline	870,401	-
Baseline + KGAT entity embeddings	878,593	0%
Baseline + KEWER entity embeddings	878,593	1.36%
Baseline + KEWER entity and query embeddings	886,785	1.36%
Baseline + TransE entity embeddings	878,593	2.56%

Observations

- Incorporating transE embeddings of entities resulted in the largest NMRR improvement.
- KGAT did not scale well to large datasets.
- In case of KEWER, entity embeddings improved the NMRR compared to the baseline by 1.36%.
- Additionally incorporating query embeddings did not result in further improvement of the NMRR.

Future Work

- Scale up our experiments in terms of data and model training.
- Evaluate the improvements across different query classes.
- Explore jointly training the embedding model and the ranking model.
- Explore how to represent queries in KGs.