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Motivation

● Augmenting machine learned models with knowledge graphs (KGs) can help add domain-specific 

knowledge to models.

● Tasks such as question-answering, named entity recognition have benefitted from this augmentation.

● KGs have been successfully used in search as well for ranking.



Task

Improve the quality of search results using a KG



How can we use a KG to improve our model?

● KG-aware learning methods can be classified into two categories:

○ Embedding-based methods 

○ Regularization-based methods

● Baseline model is a neural network that takes features derived from query, entity, and query-entity as 
inputs. 

● Incorporated KG-based embeddings of the entity (and also query in case of KEWER) to make the model 
KG-aware



How can we use a KG to improve our model?

● We experimented with the following approaches to learn the embeddings:

○ TransE embeddings

○ Knowledge Graph Attention Network for Recommendation (KGAT)

○ Knowledge graph Entity and Word Embedding for Retrieval (KEWER)



TransE

View relations as translations performed on entity 
embeddings.
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Translating Embeddings for Modeling Multi-relational Data, Antoine Bordes et. al., NeuRIPS 2013

https://papers.nips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html


KGAT

Knowledge graph attention network for recommendation. Xiang Wang, et. al., KDD 2019.

https://dl.acm.org/doi/10.1145/3292500.3330989


KEWER

Entity search model which embeds words and entities in the same space.
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Joint Word and Entity Embeddings for Entity Retrieval from a Knowledge Graph, F. Nikolaev, A. Kotov, ECIR 2020

https://link.springer.com/chapter/10.1007/978-3-030-45439-5_10


Experiments
● Training data: 996,332 examples of query-entity features and binary relevance label tuples.

● Knowledge Graph:

○ 508,725 entities

○ 7,887,096 head-relation-tail triples

○ 20 entity types including Person, Video (i.e. movie or TV series), Genre (e.g. thriller).

○ 18 relations including acted_in, directed_by.

● Trained 64 dimensional embeddings of entities separately and added them as features into the baseline model. 

● Evaluation based on Normalized Mean Reciprocal Rank (NMRR) metric.



Results

Model # Model Parameters NMRR Gain

Baseline 870,401 -

Baseline + KGAT entity embeddings 878,593 0%

Baseline + KEWER entity embeddings 878,593 1.36%

Baseline + KEWER entity and query 
embeddings

886,785 1.36%

Baseline + TransE entity embeddings 878,593 2.56%



Observations

● Incorporating transE embeddings of entities resulted in the largest NMRR improvement.

● KGAT did not scale well to large datasets.

● In case of KEWER, entity embeddings improved the NMRR compared to the baseline by 1.36%.

● Additionally incorporating query embeddings did not result in further improvement of the NMRR. 



Future Work

● Scale up our experiments in terms of data and model training.

● Evaluate the improvements across different query classes.

● Explore jointly training the embedding model and the ranking model.

● Explore how to represent queries in KGs. 


