
On the Difficulty of Disentangling Race in Representations of Clinical Notes
Pre-trained Transformer-based language models are increasingly used for clinical predictive tasks [7,

13]. Prior work has shown that sensitive patient attributes such as race are implicitly encoded in learned
representations of notes, which in turn implies that such models may exhibit biases and ultimately exacerbate
disparities, if put into practice [1]. One possible approach to mitigate this risk is to debias [5] learned
embeddings such that it is difficult or impossible to recover race from them. However, in some clinical tasks
demographic information often should inform predictions [14]. Ideally one would therefore represent sensitive
attributes in a transparent and controllable way that allows practitioners to decide when and to what extent
predictions should rely on these attributes. A potential approach in this direction is to make the use of this
information explicit by learning disentangled representations [15, 10, 4]. This would provide mechanisms to
assess the change in model output (if any) as a function of race, and to this information only optionally.

With this motivation, we investigated the use of disentangled learning strategies for neural encoders over
notes in patient EHR with the aim of isolating race information. Specifically, we evaluated: Gradient Reversal
(GR) [6], Masked Transformers (Masked) [18], and Variational Autoencoders (VAE) [16]. We compared the
impact of these methods on two pre-trained clinical language model encoders: Clinical BioBERT [2] and
PubmedBERT[8]; and a BERT model pretrained from scratch on all clinical notes from MIMIC-III [11]
following [17]. We conducted experiments with the phenotype classification benchmark from [9]. MIMIC-
III is highly imbalanced both in terms of labels and demographic distribution (most minority groups are
severely underrepresented). Therefore, we focused only on black and white patients and conditions with at
least 20% of positive labels (8 conditions), because small sample sizes can lead to noisy interpretations of
disparities [3].

We replicate the pipeline described in [9] and report AUROCs averaged over eight tasks, where for
each task we average over five runs (with different random seeds). We also probe the representations to
see if we can predict race (from the component of the representation which should not encode it after
disentanglement). We sample 1000 patients and split them into train (80%), validation (10%), and test sets
(10%). Race prediction model is a multi-layer feed forward neural network following [17]. We use notes of
type Physician, Nursing, and Nursing/Other. Figure 1 depicts the impact of the disentanglement techniques
on (a) phenotype, and, (b) race prediction. We observe the same trend across the different BERT models:
Masking is unable to identify a subnetwork that captures clinical content without being predictive of race.
GR and VAE result in representations that are less predictive of race to some extent but this results in a
significant drop in downstream performance. This indicates that the methods not only fail to disentangle
but that they also end up destroying relevant features [12].

In retrospect, this is somewhat unsurprising given prior results [1]: To the extent that clinical concepts
in notes correlate with race, an encoder must either represent these (and be able to predict race) or not (and
suffer in terms of predictive performance).

Figure 1: Impact of disentanglement techniques on race and phenotype prediction. Baseline: model without
disentanglement; VAE: Variational Autoencoder, Masked: we create patient triplets (a, p, n), where a and
p have the same diagnosis (based on ICD-9 codes) but different reported race while a and n have the same
reported race but different diagnosis; GR: we model race as a token appended to each note and continue
pretraining with a masked language modeling objective and two classifiers for race prediction: one with the
race token and the other without; and perform gradient reversal on the latter.
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